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BACKGROUND: Reductions in ambient concentrations of fine particulate matter (PM2:5) have contributed to reductions in cardiovascular (CV)mortality.
OBJECTIVES: We examined changes in CV mortality attributed to reductions in emissions from mobile, point, areal, and nonroad sources through
changes in concentrations of PM2:5 and its major components [nitrates, sulfates, elemental carbon (EC), and organic carbon (OC)] in 2,132 U.S. coun-
ties between 1990 and 2010.
METHODS: Using Community Multiscale Air Quality model estimated PM2:5 total and component concentrations, we calculated population-weighted
annual averages for each county. We estimated PM2:5 total- and component-related CV mortality, adjusted for county-level population characteristics
and baseline PM2:5 concentrations. Using the index of Emission Mitigation Efficiency for primary emission-to-particle pathways, we expressed
changes in particle-related mortality in terms of precursor emissions by each sector.
RESULTS: PM2:5 reductions represented 5.7% of the overall decline in CV mortality. Large point source emissions of sulfur dioxide accounted for
6.685 [95% confidence interval (CI): 5.703, 7.667] fewer sulfate-related CV deaths per 100,000 people. Mobile source emissions of primary EC and
nitrous oxides accounted for 3.396 (95% CI: 2.772, 4.020) and 3.984 (95% CI: 2.472, 5.496) fewer CV deaths per 100,000 people respectively.
Increased EC and OC emissions from areal sources increased carbon-related CV mortality by 0.788 (95% CI: −0:540, 2.116) and 0.245 (95% CI:
−0:697, 1.187) CV deaths per 100,000 people.
DISCUSSION: In a nationwide epidemiological study of emission sector contribution to PM2:5–related mortality, we found that reductions in sulfur-
dioxide emissions from large point sources and nitrates and EC emissions from mobile sources contributed the largest reduction in particle-related
mortality rates respectively. https://doi.org/10.1289/EHP5692

Introduction
The Clean Air Act Amendments of 1990 led to the establishment of
national, regional, and source-specific regulations that significantly
decreased ambient concentrations of fine particulate matter (PM2:5)
in many parts of the country (U.S. EPA 2017). The United States
Environmental Protection Agency (EPA) estimated that the health
and economic value of prevented health outcomes ($2 trillion) far
outweigh the costs incurred to reduce emissions ($65 billion) (U.S.
EPA 2011). However, the costs incurred to reduce emissions were
not evenly distributed across the major emission source categories
(mobile, areal, nonroad, large point sources, and other point sour-
ces). Therefore, these air quality control measures warrant contin-
ued evaluation of the public health benefits and an assessment of the
contribution of emission reductions from each source.

Health effects of PM2:5 exposures have been well documented,
with the strongest evidence related to cardiovascular (CV) morbid-
ity and mortality. Epidemiological studies showed that increased
exposures to air pollution have been associated with increased
mortality andmorbidity (Schwartz et al. 1996; Dockery et al. 1993;
Pope et al. 2002; Krewski et al. 2005; Cohen et al. 2017), whereas
short-term improvements (Breitner et al. 2009; Wang et al. 2009;
Peel et al. 2010; Dockery et al. 2013; Su et al. 2015) and long-term
reductions in concentrations (Pope et al. 2009; Correia et al. 2013;

Gilliland et al. 2017; Russell et al. 2018; Corrigan et al. 2018;
Henneman et al. 2019) have been associated with improved health
outcomes. Variation in risk with respect to particle size and chemi-
cal composition as well as the source of PM2:5 has also been
reported in cohort-based studies showing the highest risk associ-
ated with elemental carbon (EC) and organic carbon (OC) on per
unit mass and with sulfates on absolute scale (Ostro et al. 2015;
Thurston et al. 2016; Lippmann 2014; Laden et al. 2000; Vedal
et al. 2013). Combined with the evidence from animal, toxicologi-
cal, and controlled human exposure studies, the body of scientific
research supported a weight-of-evidence conclusion that a causal
relationship exists between short- and long-term PM2:5 exposures
and cardiovascular health effects, including mortality (U.S. EPA
2009).

Since 1990, concurrent with reductions in ambient PM2:5 con-
centrations, CV mortality decreased across the United States and
other developed countries primarily due to improved health care
and lifestyle. In the U.S. between 1980 and 2000, coronary heart
diseasemortality rates decreased by half, with 90% of the reduction
attributable to better control of cholesterol and blood pressure,
reduced prevalence of tobacco smoking, increased physical activ-
ity, and improvements in clinical treatments, but reductions were
partially offset by increased rates of obesity and type-2 diabetes
(Capewell et al. 2009). The combined effects ascribed by summing
these major risk factors do not account for a meaningful portion of
the decline (10%) in CV mortality, which remained the leading
cause of death. Because PM2:5 has been causally related to CV
morbidity andmortality, we investigated the contribution of reduc-
tions in ambient PM2:5 concentrations to the reduction in CV mor-
tality and the relative contributions of the emission source sectors
to the observed change.

This study examined which portion of the observed declining
trend in CV mortality between 1990 and 2010 was associated with
changes in ambient PM2:5 total and component concentrations
(nitrates, sulfates, and EC and OC). Using the index of Emission
Mitigation Efficiency (EME) (Wang et al. 2017), estimated PM2:5,
total- and component-related CV mortality was expressed relative
to the change in precursor emissions by each of the major emission
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source sectors. We focused on four well-defined pathways of pre-
cursor emissions leading to the formation of PM2:5 (nitrogen
oxides emissions to nitrate PM2:5, sulfur dioxide emissions to sul-
fate PM2:5, primary EC emissions to EC PM2:5, and primary OC to
OC PM2:5) from five major emission source sectors (mobile, areal,
nonroad, large point sources, and other point sources).

Materials and Methods

Data Sources
Mortality data. Individual-level mortality data for each year
between 1990 and 2010 were obtained from the U.S. National
Center for Health Statistics. We calculated crude CV and chronic
obstructive pulmonary disease (COPD) mortality rates for each
5-y age group, county, and year and used the overall U.S. age distri-
bution in 2000 to calculate age-standardized county-level rates
(Anderson and Rosenberg 1998). Annual county-specific CVmor-
tality was expressed in deaths per 100,000 people.

The variance in CV mortality was calculated for each county
and each year using standard formulas, which assumed the popula-
tion was known and the number of deaths was distributed as a
Poisson random variable (Murphy et al. 2013). Inverses of the var-
iances in the annual CV mortality, which were proportional to
county population, were used to weight the outcomes in the regres-
sion analysis. Annual CV and COPD mortality rates for each
county were age-standardized to the overall U.S. population age
distribution in 2000 to control for temporal and spatial variation in
age distribution (Anderson and Rosenberg 1998). For the analysis,
we used mortality rates from 2,132 counties with a population of at
least 20,000 people, out of 3,109 counties in the contiguous United
States.

Air quality data.We estimated annual average PM2:5-total and
component concentrations (sulfates, nitrates, EC, andOC) between
1990 and 2010 on a 36× 36-km grid using the Community
Multiscale Air Quality (CMAQ; version 5.0.2) framework, an
emissions-basedmodel of chemical formation and transport of pol-
lutants in the atmosphere (Gan et al. 2015). To simulate air quality
over the entire period, we used internally consistent historical
emissions data fromXing et al. (2013) with lateral boundary condi-
tions derived from the hemispheric simulations (Xing et al. 2015).
The state-level historical anthropogenic emissions of sulfur diox-
ide (SO2), nitrogen oxides (NOx), carbonmonoxide, nonmethane
volatile organic compound, ammonia, and particulate matter
(PM10 and PM2:5) for 49 sectors were developed from a consist-
ent series of spatially resolved emissions, as described in (Xing
et al. 2013). This approach used emission factors, time–activity
data (vehicle miles traveled, tons of fuel sold in a county, etc.),
and emission controls from various long-term databases, includ-
ing the State Energy Data System.When compared with emissions
calculated based on periodic emissions inventories, such as the
National Emissions Inventory, this approach yielded a continuous
and consistent inventory with smoother emission trends. In addi-
tion, emission trends for grid cells in the vicinity of monitoring sta-
tions showed good agreement with trends in ambient observed
SO2, NO2, CO, and EC concentrations (Xing et al. 2013).

We used thin-plate smoothing, using the R software package
“fields” (version 9.9; R Development Core Team) (Nychka et al.
2018), to interpolate PM2:5 concentrations to population centroids
of U.S. census tracts. We then calculated population-weighted
averages across census-tract centroids to obtain annual PM2:5
concentrations for each county and year.

Covariate data. The covariate set included time-variant and
time-invariant factors that have been reported as explanatory or
confounder variables formortality and air pollution trends (Correia
et al. 2013; Corrigan et al. 2018; Pope et al. 2009). Time-invariant

factorswere based on 1990 as a baseline year and included baseline
year PM2:5 concentrations and CV mortality for each county, me-
dian household income (base-10 log), percent of nonwhite popula-
tion, and population (Bureau of Economic Analysis n.d.). For
time-variant factors, the covariate set included age-standardized
annual COPDmortality rates to account for the cumulative burden
of smoking and annual smoking rates (Pope et al. 2009).

Analytic Approach
PM2:5–related CV mortality trend. Our first analysis aimed to
determine the portion of the temporal change in CV mortality at-
tributable to the temporal change in the ambient concentration of
PM2:5. To achieve this objective, we fitted the following linear
regression models:

Yst = l1s + sTt + h1Cst + e1st, ð1Þ

Xst = l2s + aTt + h2Cst + e2st, ð2Þ

Yst = l3s + s0Tt + bXst + h3Cst + e3st, ð3Þ
where for a single county s and year t, Yst represented CV mortal-
ity, Xst represented PM2:5 concentrations, and Cst represented
time-variant and time-invariant covariate adjustment set varia-
bles. The temporal variable (Tt =1990−Yeart) represented years
since the baseline year (1990), such that positive coefficients of
temporal trends implied declines in PM2:5 concentrations and CV
mortality. Directed acyclic graph for this model is given in the
Supplemental Figure S1(A).

The parameter set of interest ðs, a, b, s0Þwas estimated using the
data from all counties and all years. First, we estimated the overall
national temporal trend (s) in annual CVmortality, measured in CV
deaths per 100,000 persons per year, which accounted for the tem-
poral changes in CVmortality adjusted for time-variant and time in-
variant covariates but not adjusted for PM2:5 (Equation 1). Second,
we estimated the national temporal trend (a) in annual PM2:5 con-
centrations, measured in mass concentration (lg=m3) per year,
while adjusting for the covariates (Equation 2). Third, we estimated
the association between PM2:5 concentrations and CVmortality (b),
measured in CV deaths (per 100,000 persons) per unit change in
mass concentration (lg=m3), assuming that this association was
consistent nationally after adjusting for the covariates setCst and for
other time-varying changes in CVmortality unrelated to PM2:5 con-
centrations (s0) (Equation 3). Finally, we calculated PM2:5-related
CV mortality as a product of the risk to CV mortality for each
lg=m3 change in PM2:5 and the annual change in PM2:5 concentra-
tions (ab).

Each model included a county-level random intercept to
account for variation due to repeated measures from the same
county and differences in baseline CV rates. Random errors in
Equations 1–3 were assumed to have zero mean, and their var-
iances were weighted by the inverse squared standard errors
(SEs) of the CV mortality rate estimates at the baseline year
1990. Because the inverse squared SEs were proportional to the
county population size, the weighted regressions accounted for
spatial differences in the precision of the CV mortality esti-
mates due to population. The same county-specific weights
(Ws) scaled the random measurement error (r2

k) in all regres-
sions to maintain consistent adjustment, such that the variance
of random errors in regression k was Varðek stÞ= r2

kWs.
To determine the portion of the temporal change in CV mor-

tality accounted for by the temporal change in PM2:5, we parsed
the overall temporal trend in CV mortality (s) into the non-
PM2:5–related trend (s0) and the PM2:5-related trend (ab).
Generally, the temporal trend can be shown to exactly equal the
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sum of the PM2:5-related trend and non-PM2:5–related trend in
unadjusted models (MacKinnon et al. 2007; Hayes 2015). The SE
of the PM2:5-related CV mortality was estimated by the first-order
approximation of the variance of the product:

SEðcabÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðba2 +r2

aÞðbb2
+r2

bÞ− ðbabbÞ2
r

, (4)

where ra and rb are the SEs for the respective effects (Sobel
1982).

PM2:5 Component–Related CVMortality Trend
Our next analysis was to determine the proportion of the tempo-
ral change in CV mortality attributable to the temporal change
in the ambient concentration of major PM2:5 components.
Annual concentrations of individual PM2:5 components within
county (nitrates, sulfates, EC, or OC) were highly correlated to
each other and to the total PM2:5 concentration during the time
period considered (Supplemental Table S1). Therefore, the esti-
mation of component-related CV mortality was adjusted for
trends in total PM2:5 concentration not associated with variation
in that component over time through orthogonalization (Hastie
et al. 2001; Schwartz et al. 2015). To control for the contribution
of these PM2:5 copollutants, we modified the single factor analy-
sis by decomposing the total PM2:5 concentrations (Xst) into the
part explained by variation in a component (Zst) and the part in-
dependent of the variation in the component (Rst) [Supplemental
Figure S1(B)]. The independent portion was obtained using the
residuals Rst = ðXst − bXstÞ from the regression of the total PM2:5
concentration against the component concentration across all
counties and years:

Xst =l0s +/ Zst + h0Cst + e0st: (5)

The coefficient / measured the estimated change in total PM2:5
mass concentration per unitmass change in the component, adjusted
for the covariates. The residuals represented the remaining portions
of the total PM2:5 concentration that could not be related to the com-
ponent or the covariates. Statistically, the component Zst and the re-
sidual Rst would not be correlated (because residuals did not vary
within the linear space of the predictors), so the component and non-
component estimated effects of PM2:5 on CV mortality could then
be jointly estimated without collinearity. We then fitted the follow-
ing regression equations:

Zst = l1s + a0Tt + h1Cst + e1st, ð6Þ

Rst =l2s + a00Tt + h2Cst + e2st, ð7Þ

Yst = l3s + s00Tt + b0Zst + b00Rst + h3Cst + e3st, ð8Þ
where errors were again weighted by the inverse SEs for the 1990
CV mortality estimates. As in the single-factor analysis, a0 and a00
measured temporal trends in PM2:5-component concentrations and
noncomponent concentrations (Equations 6 and 7), and b0 and b00

measured the component and noncomponent CV mortality risk,
adjusted for the covariates and the copollutants (Equation 8). The
product a0b0 then expressed the temporal trend in CV mortality
attributed to a specific component Zst, adjusted for the covariates
Cst and for the changes in PM2:5 mass concentration, which were
unrelated variations in the component. An alternative to this
approach could have adjusted for all components at once, but due
to the high correlation between PM2:5 components, the effect of
each component individually could not be isolated from the effect
of the mixture of components. Analysis for each PM2:5 component

was then conducted separately, repeating the same method to
obtain the change over time trend (a0), the component-specific risk
(b0), and the component-mediated portion of the CV mortality
trend (a0b0).

EME
In the final step of the analysis, we linked changes in total and
component-specific PM2:5–related CVmortality to a policy-relevant
metric of changes in precursor emissions and their source sectors.
Contribution of emissions from each source to the reduction in CV
mortality was expressed in deaths per 100,000 persons accounting
for the total change in concentrations, thus enabling direct compari-
son of contribution in absolute terms. We focused on four well-
defined pathways of precursor emissions to PM2:5 formations: nitro-
gen oxides (NOx) emissions to nitrate PM2:5, SO2 emissions to sul-
fate PM2:5, primary EC emissions to EC PM2:5, and primary OC to
OCPM2:5.

We used an EME index to relate changes in the precursor emis-
sions to changes in particle-related CV mortality (Fann et al. 2009,
2012; Wang et al. 2017).We used the component-specific mortality
risk coefficient from Equation 8 to connect total source emissions to
component-related CV mortality at the national level. Emissions
mitigated mortality expressed the change in component-related
mortality in terms of the change in total mass of its precursor
emissions.

To calculate EME for each of the four emission-to-PM2:5
component pathways, we first calculated expected component-
related mortality for each county as the product of the
component-specific mortality risk coefficient (Equation 8) and
the annual PM2:5-component concentration (Uz

st = b0 ×Zst). We
then averaged the component-related mortality over counties
into the national average component-related mortality (�Uz

t )
and regressed it against the total annual mass (Vt) of the pre-
cursor emission:

�Uz
t = l4 +kz Vt + e4t: (9)

The estimated coefficent kz measured the EME for each of
the four emission-to-PM2:5 component pathways indexed by z,
as the predicted change in national component-related CV
deaths (per 100,000 persons) for every metric kiloton change in
national precursor emissions. The positive EME indicated that
reductions in emissions mitigated (reduced) component-related
mortality.

The emission particle-specific EME was multiplied with the
average change in emissions over the 20-y period to calculate
total mitigated CV mortality in deaths per 100,000 persons.
The average change in emission was also calculated for each of
the five representative emission sources: mobile, nonroad, area,
large point, and other point sources (Xing et al. 2013).
Mitigated CV mortality by source-specific changes in emis-
sions was then calculated based on changes in emissions from
each source sector. Mobile sources included emissions from
on-road gasoline and diesel vehicles. Nonroad sources incorpo-
rated emissions from other types of vehicles, such as construc-
tion equipment, trains, aircraft, and ships. The point sources
included large sources, such as power plants and industrial
facilities, and other smaller operations emitting combustion
products. Areal sources included all other emission sources and
a wide variety of emission products, such as wildland fires and
open burning. Collectively, these sources accounted for anthro-
pogenic primary emissions that preceded the development of
the secondary PM2:5 components. Definitions of each emission
source category and relative contribution for each pollutant to
each source can be found in Xing et al. (2013).
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Results

Overall Trends in CVMortality and Air Quality
Ambient PM2:5 concentrations decreased, on average, by 0.134
(95% CI: 0.133, 0.135) lg=m3 each year (Equation 2; Table 1;
Figure S2; Table S2). Concurrently, CV mortality rates (adjusted
for baseline year mortality, baseline year PM2:5, median household
income, county-level percent nonwhite, and age-standardized
COPD mortality) decreased on average by 9.196 (95% CI: 9.160,
9.232) deaths per 100,000 persons each year between 1990 and
2010 (Equation 1). Across the 2,132 counties studied, the Midwest
and South had the highest baseline CV mortality rates in 1990,
whereas annual reductions were highest throughout the Midwest
and Northeast (Figure S3). Most areas observed an overall annual
reduction in ambient concentrations, but areas with high baseline
levels of PM2:5 in 1990 experienced the largest annual reductions
in concentrations (Figure S4). Among the main components of
PM2:5, sulfates changed by the largest amount, having decreased
on average by 42.1% (95% CI: 41.9, 42.3) between 1990 and 2010
(Supplemental Table S2).

CVMortality Rates Attributable to Trends in PM2:5

The decrease in CV mortality rates can be apportioned to the
declines in PM2:5 concentrations. On average, each 1-lg=m3 reduc-
tion in PM2:5 was associated with 3.884 (95% CI: 3.562, 4.206)
fewer deaths per 100,000 persons (Table 1; Table S3). When
combined with the annual decline in PM2:5 concentrations, the
PM2:5-trend accounted for 0.521 (95% CI: 0.477, 0.565) fewer
deaths per 100,000 persons each year, for a total change of 10.44
(95% CI: 9.56, 11.32) fewer deaths per 100,000 persons over the
whole period. As such, declines in PM2:5 accounted for 5.7% of the
total decline inCVmortality rates (Table 1).

As the average concentrations of PM2:5 declined in most coun-
ties, PM2:5-related CV mortality decreased across the continental
United States (Figure 1). However, an increase in PM2:5-related
CV mortality trends was observed in counties commonly affected
bywildlandfires: the westernUnited States and northern Florida.

CVMortality Rates Attributable to Trends in PM2:5
Components
When considering CV mortality reductions related to changes in
PM2:5-component concentrations, estimated risk varied across
components in relative and absolute terms (Table 1; Table S4).
Reductions in sulfates, elemental carbon and nitrates attributed
the largest absolute reduction in CV mortality, with 11.20 (95%
CI: 10.32, 12.08), 7.96 (95% CI: 7.28, 8.64) and 7.70 (95% CI:
7.26, 8.14) fewer CV deaths per 100,000 persons over the 20-y
period, respectively (fourth row of Table 1). Therefore, reduc-
tions in sulfates had the largest attributable change in absolute
terms. Reductions in EC and nitrates had the strongest association
with changes in CV mortality per change in mass concentration,
at 65.02 (95% CI: 59.64, 70.40) and 56.31 (95% CI: 53.33, 59.29)
fewer deaths per 100,000 persons for each 1-lg=m3 decrease in
concentration of EC and nitrates, respectively.

Mitigation by Emission Source Sectors
The greatest total mitigation in PM2:5-related CV mortality rates
was attributed to the reductions in sulfate concentrations driven
by the reductions in SO2 (Table 2, second column). A 20-y
reduction of 11.064 (95% CI: 9.834, 12.294) deaths per 100,000
persons was attributed to the mitigation of total SO2 emissions.
Reductions in SO2 emissions from large point sources (such as
power plants) represented the largest source sector for the decline
sulfate-related CV mortality at 6.685 (95% CI: 5.703,7.667)

Table 1. Total PM2:5- and component-related cardiovascular (CV) mortality trends: 2,132 U.S. counties, 1990–2010. The 20-y change was calculated by multi-
plying PM2:5-related CV mortality trends by 20 y. The percent of the overall CV mortality trend was calculated as the ratio between the total CV mortality
trend unadjusted for PM2:5 (s) and the PM2:5-related CV trend (ab).

Total PM2:5 Nitrates Sulfates Elemental carbon Organic carbon

Weighted annual trend in PM2:5 mass concentration
(a: lg=m3, per year)

0.134 (0.001) 0.0068 (0.0001) 0.0501 (0.0002) 0.00613 (0.00003) 0.0091 (0.0001)
[0.132, 0.136] [0.0066, 0.0070] [0.0497, 0.0505] [0.00607, 0.00619] [0.0089, 0.0093]

Associated risk between PM2:5 and CV mortality
(b: deaths per 100,000 persons, per lg=m3)

3.884 (0.161) 56.31 (1.49) 11.16 (0.44) 65.02 (2.69) 12.23 (0.87)
[3.562, 4.206] [53.33, 59.29] [10.28, 12.04] [59.64, 70.40] [10.49, 13.97]

PM2:5-related CV mortality trend (ab: deaths per
100,000 persons, per year)

0.521 (0.022) 0.385 (0.011) 0.560 (0.022) 0.398 (0.017) 0.111 (0.008)
[0.477, 0.565] [0.363, 0.407] [0.516, 0.604] [0.364, 0.432] [0.095, 0.127]

20-y change in PM2:5 -related CV mortality
[20 (ab): deaths per 100,000 persons]

10.44 (0.44) 7.70 (0.22) 11.20 (0.44) 7.96 (0.34) 2.22 (0.16)
[9.56, 11.32] [7.26, 8.14] [10.32, 12.08] [7.28, 8.64] [1.90, 2.54]

Percent of overall CV mortality trend
[100 ðabÞ=s: percent]

5.7% 4.2% 6.1% 4.3% 1.2%

Note: When applicable, standard errors were reported in parentheses; 95% confidence intervals are reported in brackets.

Figure 1.Map of PM2:5-related reductions in cardiovascular mortality rates for contiguous U.S. counties, 1990–2010. PM2:5-related reductions in age-standar-
dized cardiovascular (CV) mortality rate were calculated as products of county-level annual trends in PM2:5 and the nationally estimated association between
PM2:5 concentration and CV mortality.
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deaths per 100,000 persons. Similarly, a reduction of 8.139 (95%
CI: 4.957,11.321) deaths per 100,000 persons was attributed to
the mitigation of NOx emissions with the largest contribution
from mobile and large point sources.

EC-related CV mortality declined by 0.818 (95% CI: 0.684,
0.952) deaths per 100,000 persons per metric kiloton of reduced
primary EC emissions, in comparison with 0.118 (95% CI: 0.082,
0.154), 0.022 (95% CI: 0.020, 0.024), and 0.022 (95% CI: 0.014,
0.030) fewer CV deaths per 100,000 persons for each metric kilo-
ton of reduced OC, SO2, NOx, respectively (Table 2). The esti-
mated difference in CV mortality resulting from the absolute
decline in EC emissions over the study period (3.637 fewer CV
deaths per 100,000; 95% CI: 2.007, 5.267) represented 46% of the
estimated decline in CVmortality rates related to reduced EC parti-
cle mass concentrations during the same time period (7.96 fewer
CV deaths per 100,000; 95% CI: 7.28, 8.64) from Table 1.
Reductions in EC emissions from the mobile sector accounted for
the largest reductions in EC particle–related CVmortality over the
study period (3.396 fewer CV deaths per 100,000; 95% CI: 2.772,
4.020), whereas a slight upward trend in EC emissions from the ar-
eal sector led to increased EC particle–related CVmortality (0.788
additional CV deaths per 100,000; 95% CI: −2:116, 0.540). In the
CMAQmodeling framework, the areal sector included a variety of
sources for EC emissions but was strongly influenced by emissions
fromwildfire events (Dennison et al. 2014).

Smaller reductions in OC particle–related CV mortality rates
were attributed to primary OC emissions during the time (0.100
fewer CV deaths per 100,000; 95% CI: −0:850, 1.050) than reduc-
tions related to EC emissions. However, similar to the sources for
EC emissions, reductions in OC emissions from the mobile sector
accounted for the largest reductions in OC particle–related CV
mortality (0.245 fewer deaths per 100,000; 95% CI: 0.167,0.323),
whereas increased areal source emissions was attributed to 0.245
(95%CI: −1:187, 0.697) additional OC particle–related CV deaths
per 100,000 people.

Discussion
In this research we characterized the portion of the CV mortality
annual trend that can be explained by the changes in ambient con-
centrations of PM2:5, its major chemical components, and their
related emission source sectors, based on CMAQ modeling
framework. We estimated that reductions in PM2:5 accounted for
5.7% of the decline in CV mortality rates, or 10.44 (95% CI:
9.56, 11.32) fewer deaths per 100,000 persons between 1990 and
2010. We estimated that sulfates and elemental carbon played the
most substantial role in reducing PM2:5-related CV mortality.

Sulfates had the greatest total impact, mainly due to substantial
decreases in SO2 emissions from power plants and similar sour-
ces. EC and nitrates had the greatest impact on health outcomes
per unit of component mass, at 65.02 (95% CI: 59.64,70.40) and
56.31 (95% CI: 53.33, 59.29) fewer CV deaths per 100,000 per-
sons per lg=m3, respectively. These reductions were attributed
mainly to reductions in mobile vehicle emissions, at 3.396 (95%
CI: 2.772, 4.020) and 3.984 (95% CI: 2.472, 5.496) CV deaths
per 100,000 persons, respectively. Changes in the OC contributed
to reduction in CV mortality by mobile sources but increased the
CV mortality burden due to increased emissions from areal sour-
ces, mostly driven by contribution of wildfires.

Previous studies using risk assessment methods have estimated
public health benefits of environmental policies at the national level
during the same period that we considered here. Risk assessments
combined concentration–response functions from epidemiological
studies with anticipated changes in ambient concentrations from a
specific or hypothetical regulatory action to estimate the potential
health benefit of interventions (Bell et al. 2011; Rich 2017; Fann
et al. 2017; Lee et al. 2015; Boogaard and van Erp 2019; Brauer et
al. 2016). Although these approaches provided useful projection of
health impacts, they were subject to uncertainties related to concen-
tration–response relationships of a different period, concentration
range, and composition of ambient particles or population (Breitner
et al. 2009; Dominici et al. 2007; Bell et al. 2011). In this study, we
offer epidemiological analysis of the fraction of long-term trends in
CV mortality that can be attributed to changes in total and compo-
nent specific PM2:5 based on the observed mortality trends. Using
the index of EME,we expressed attributable change inCVmortality
relative to the change in precursor emissions from each of the major
emission-source sectors. Change in CV mortality was expressed as
deaths per 100,000 persons, which enables comparison across emis-
sion sectors.

The estimated risk of CV mortality associated with change in
total and component concentrations of PM2:5 was consistent with
estimated risks reported in cohort-based studies in which confound-
ing by individual-level factors could be controlled (Ostro et al.
2015; Thurston et al. 2016). Ostro et al. (2015) examined the effects
of chronic exposure to PM2:5 on all-cause, CV, ischemic heart dis-
ease, and respiratory mortality in California using monitor-based
exposures. Adjusted hazard ratios (HR) for ischemic heart disease
mortality were 1.04 (95% CI: 0.94, 1.14) per 0:8-lg=m3 increase in
EC and 1.03 (95% CI: 0.91, 1.18) per 9:6-lg=m3 increase in PM2:5,
corresponding to standardized HR of 1.05 and 1.003 for a 1-lg=m3

increase in each exposure (or 5% and 0.3% increased mortality),
respectively. HRs for mortality in association with sulfates, which
were negligible in the California study area, were not reported.

Table 2. Emission mitigation efficiency (EME) and total mitigated cardiovascular (CV) mortality reductions by emission sources: 2,132 U.S. counties, 1990–
2010. Total mitigated mortality equaled the product of the EME, the annual change in the emissions, and 20 y. CV mortality was measured in age-standardized
CV deaths per 100,000 persons.

EME Total mitigated CV mortality between 1990 and 2010 (Deaths per 100,000 persons)

Emission-PM
relationship

(CV mortality,
per metric kiloton) Total emission Areal Non-road Mobile Large point Other point

NOx to Nitrates 0.022 (0.004) 8.139 (1.591) 0.080 (0.098) 0.436 (0.131) 3.984 (0.756) 3.055 (0.590) 0.585 (0.123)
[0.014, 0.030] [4.957, 11.321] [−0:116, 0.276] [0.174, 0.698] [2.472, 5.496] [1.875, 4.235] [0.339, 0.831]

SO2 to Sulfates 0.022 (0.001) 11.064 (0.615) 0.904 (0.048) 0.059 (0.011) 0.354 (0.017) 6.685 (0.491) 3.061 (0.141)
[0.020, 0.024] [9.834, 12.294] [0.808, 1.000] [0.037, 0.081] [0.320, 0.388] [5.703, 7.667] [2.779, 3.343]

Primary to
PM2:5 Elem.
Carbon

0.818 (0.067) 3.637 (0.815) −0:788 (0.664) 0.637 (0.207) 3.396 (0.312) 0.121 (0.030) 0.271 (0.033)
[0.684, 0.952] [2.007, 5.267] [−2:116, 0.540] [0.223, 1.051] [2.772, 4.020] [0.061, 0.181] [0.205, 0.337]

Primary to
PM2:5 Organic
Carbon

0.118 (0.018) 0.100 (0.475) −0:245 (0.471) 0.008 (0.011) 0.245 (0.039) 0.017 (0.004) 0.076 (0.012)
[0.082, 0.154] [−0:850. 1.050] [−1:187, 0.697] [−0:014, 0.030] [0.167, 0.323] [0.009, 0.025] [0.052, 0.100]

Note: Standard errors were reported in parentheses; 95% confidence intervals are shown in brackets.
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Thurston et al. (2016) estimated associations between ischemic
heart disease mortality and source-specific PM2:5 components in
100 metropolitan areas across the United States. and reported
adjusted HRs of 1.03 (95%CI: 1.00, 1.06) per 0:26-lg=m3 increase
in EC, 1.06 (95% CI: 1.02, 1.11) per 0:53-lg=m3 increase in sulfur,
and 1.03 (95% CI: 1.00, 1.06) per 3:13 lg=m3 of PM2:5, corre-
sponding to standardized HRs of 1.12 (95% CI: 1.00, 1.25), 1.12
(95% CI: 1.04, 1.22), and 1.009 (95% CI: 1.00, 1.02) per 1-lg=m3

increases in each exposure (12.0%, 11.6%, and 0.9% increases from
baseline), respectively. Because a 0:53-lg=m3 change in sulfur
would correspond to 1:59 lg=m3 of sulfates by molecular weight,
the standardized HR for sulfates when converted was 1.037 (95%
CI: 1.01, 1.07) per 1-lg=m3 increase in sulfates, or 3.7% increase
from baseline. Using age-standardized rates for all causes of CV
mortality, we estimated that 1-lg=m3 increases in EC, sulfates, and
total PM2:5 concentrations were associated with 65.02 (95% CI:
59.64, 70.40), 11.16 (95% CI: 10.28, 12.04), and 3.88 (95% CI:
3.56, 4.20) increases in CV deaths per 100,000 people, respectively,
corresponding to 15.5%, 2.67%, and 0.9% increases relative to the
average baseline mortality rate in 1990 [416.9 per 100,000 persons
(95% CI: 415.9, 417.9); Table S1]. Although these risk estimates
were remarkably consistent, the differences could be expected, due
to variations in spatial and temporal distribution of underlying risk,
outcome specific risk, or differences inmethodological approaches.

For the air quality estimates, CMAQ model formulation pro-
vided spatially and temporally resolved estimates of total- and
component-specific PM concentrations, which was particularly val-
uable for the assessment of trends in areas without air quality moni-
tors. Air pollutant fields simulated by CMAQ were routinely used
for air quality planning and forecasting and have previously been
evaluated for their agreement with the observed data. Previous stud-
ies have shown that the trends in the total PM2:5 and its components
simulated by the coupled CMAQmodel were highly correlated with
observation data from monitors at the annual level and are similar
both in direction and magnitude (Gan et al. 2016; Appel et al. 2017;
Foley et al. 2010). The 1990–2010 CMAQ simulations used in this
study represented the first effort in which decadal-scale CMAQ
simulations were performed over the entire United States using a
consistent set of model inputs and CMAQ configurations (model
version and science options) for the entire time period. The 20-y
CMAQ simulations used for this analysis allowed us to estimate
trends in air quality and associations with CV mortality begin-
ning in the early 1990s, before nationwide monitoring networks
were fully established as a consequence of the 1990 Clean Air
Act amendments.

The CMAQ model simulations used in this analysis could not
be compared with observed data for the entire time period and
spatial domain. However, the total and speciated PM2:5 mass esti-
mates have been compared with limited data from the Clean Air
Status and Trends Network (CASTNET) and the Interagency
Monitoring of Protected Visual Environments (IMPROVE) net-
work for 1995–2010 (Gan et al. 2015). In addition, total and
speciated PM2:5 mass estimates from different versions of the
CMAQ model have been extensively compared with observations
from CASTNET, IMPROVE, and Chemical Speciation Network
(CSN) for 2006 (Foley et al. 2010) and for 2011 (Appel et al.
2017). Those studies showed that model performance was gener-
ally best for sulfates, followed by other secondary inorganic aero-
sols (nitrate and ammonium) and EC, and lowest for OC.
Consequently, associations between OC reductions and CV mor-
tality trends observed in this study should be interpreted with
caution.

The covariate adjustment set included time-variant and time-
invariant factors that have been reported as explanatory or con-
founder variables for mortality trends in air pollution health studies

(Correia et al. 2013; Corrigan et al. 2018; Pope et al. 2009). Time-
invariant factors included baseline year PM2:5 concentrations, base-
line year CVmortality, median household income, and county-level
percent nonwhite population. Time-invariant factors were used to
accountmainly for spatial variations in CVmortality unrelated to air
quality. Time-varying factors included linear term for CVmortality
annual trend and age-standardized COPD mortality rates, which
have been used to account for the accumulated exposure to smoking
in previous studies (Correia et al. 2013; Corrigan et al. 2018; Pope
et al. 2009). Annual county-level CV mortality rates and COPD
mortality rates were age-standardized to theU.S. population in 1990
to allow direct comparison of mortality rates between counties and
across years, controlling for temporal and spatial variations in age
distribution. Due to the high variance in estimated mortality rates
for smaller populations, mortality data from counties with fewer
than 20,000 people in 1990 were combined with the data from
nearby counties or excluded entirely (Wang et al. 2013; Roth et al.
2017). The merging reduced the number of counties from 3,109 to
2,132, but selection bias was unlikely because the remaining coun-
tieswere located throughout the continental United States.

Although we adjusted for several county-level characteristics
identified as potential confounders in previous studies, we cannot
exclude the possibility of residual confounding by other factors
associated with CV mortality or PM2:5 exposures, including other
county-level factors (e.g., local economic disruptions) and
individual-level factors (e.g., smoking or alcohol consumption).
In addition, we did not evaluate factors that might modify the
effects of county-level PM2:5 and PM2:5 components on CVmor-
tality, such as differences in health care access or other socioeco-
nomic disparities. Additionally, we explored only linear trends
between annual CVmortality and PM2:5 concentrations, but non-
linear trends could also be explored in future research. We used
population-weighted average annual concentrations of PM2:5
and components but did not consider variations within county or
within year, and we cannot exclude the possibility of exposure
misclassification. Finally, the scope of our health effects analysis
was limited to overall CV mortality rates, but we measured nei-
ther the total burden of CV disease nor effects due to different
subtypes of CV disease.

Our approach to estimating the effect of a single PM2:5 compo-
nent controlled for confounding by unrelated variation in the other
components. Each component has its own risk estimate, carried
though to a calculation ofmitigatedmortality.Mortality risk coeffi-
cients measured the extent that changes in CVmortality rates were
associated to changes in the component concentration, but the tox-
icity would still be related to the entire mixture of particles that
covariate with that component. Statistically, relative toxicity can-
not be further differentiated based on observational data. Other
analysis techniques for multiple correlated mediators might detect
the combination of PM2:5 components most strongly associated
with trends in CV mortality but may not yield the effects attribut-
able to individual components (VanderWeele and Vansteelandt
2014).

In summary, we presented a nationwide-trends analysis attribut-
ing a proportion of the long-term changes in CV mortality to long-
term changes in total ambient PM2:5 concentrations, specific PM2:5
components, precursor emissions, and their source sectors. Linking
changes in health burden to changes in precursor emissions by cal-
culating component-specific CVmortality change, we express abso-
lute change in risk to provide insights into the contribution of
emission sectors to improved health outcomes. Further research
would be needed to establish causal effects of specific regulations,
but the overall improvement in air quality due to the combined
reductions in SO2, EC, and NOx emissions showed human health
benefits. Because our analysis suggested SO2 emissions and
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emission from mobile sources as major drivers of reduced
PM2:5-related CVmortality rates, these regulatory programs may
be the most pertinent for further accountability studies.

Acknowledgments
The authors are grateful to S. Jenkins (EPA/OAR), J. Sacks

(EPA/NCEA), and D. Costa [EPA/Office of Research and
Development (ORD), retired] for careful review and constructive
feedback.

This research was supported in part by an appointment to the
Research Participation Program for the EPA, ORD, administered
by the Oak Ridge Institute for Science and Education through an
interagency agreement between the U.S. Department of Energy
and the EPA.

A.G.R. conceived the study. G.C.P. carried out the data
analysis. A.G.R. reviewed the mathematical framework. L.M.N.
reviewed the epidemiologic model. R.M. and C.H. contributed the
CMAQmodel results. A.G.R, L.M.N., G.C.P., A.E.C. contributed
to the discussion and interpretation of the results. All authors
contributed to writing, review, and commenting on the paper.

Although this work has been reviewed for publication by the
EPA, it does not necessarily reflect the views and policies of the
agency.

All data needed to evaluate the conclusions in the paper are
present herein or in the supplementary materials. Data used in
this analysis will be posted on EPA Science Hub website with a
unique DOI: 10.23719/1503961.

References
Anderson RN, Rosenberg HM. 1998. Age standardization of death rates: implemen-

tation of the year 2000 standard. National Vital Statistics Reports 47(3):1–16, 20,
PMID: 9796247.

Appel KW, Napelenok SL, Foley KM, Pye HOT, Hogrefe C, Luecken DJ, et al. 2017.
Description and evaluation of the Community Multiscale Air Quality (CMAQ)
modeling system version 5.1. Geosci Model Dev 10(4):1703–1732, PMID:
30147852, https://doi.org/10.5194/gmd-10-1703-2017.

Bell ML, Morgenstern RD, Harrington W. 2011. Quantifying the human health bene-
fits of air pollution policies: review of recent studies and new directions in
accountability research. Environ Sci Pol 14(4):357–368, https://doi.org/10.1016/j.
envsci.2011.02.006.

Boogaard H, van Erp AM. 2019. Assessing health effects of air quality actions:
what’s next? Lancet Public Health 4(1):e4–e5, PMID: 30448149, https://doi.org/
10.1016/S2468-2667(18)30235-4.

Brauer M, Freedman G, Frostad J, van Donkelaar A, Martin RV, Dentener F, et al.
2016. Ambient air pollution exposure estimation for the Global Burden of
Disease 2013. Environ Sci Technol 50(1):79–88, PMID: 26595236, https://doi.org/
10.1021/acs.est.5b03709.

Breitner S, Stölzel M, Cyrys J, Pitz M, Wölke G, Kreyling W, et al. 2009. Short-term
mortality rates during a decade of improved air quality in Erfurt, Germany.
Environ Health Perspect 117(3):448–454, PMID: 19337521, https://doi.org/10.
1289/ehp.11711.

Bureau of Economic Analysis. n.d. Regional Economic Accounts. https://www.bea.
gov/data/economic-accounts/regional [accessed 16 March 2018].

Capewell S, Hayes DK, Ford ES, Critchley JA, Croft JB, Greenlund KJ, et al. 2009.
Life-years gained among US adults from modern treatments and changes in
the prevalence of 6 coronary heart disease risk factors between 1980 and
2000. Am J Epidemiol 170(2):229–236, PMID: 19541856, https://doi.org/10.1093/
aje/kwp150.

Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. 2017.
Estimates and 25-year trends of the global burden of disease attributable to
ambient air pollution: an analysis of data from the Global Burden of Diseases
Study 2015. Lancet 389(10082):1907–1918, PMID: 28408086, https://doi.org/10.
1016/S0140-6736(17)30505-6.

Correia AW, Pope III CA, Dockery DW, Wang Y, Ezzati M, Dominici F, et al. 2013.
The effect of air pollution control on life expectancy in the United States: an
analysis of 545 U.S. counties for the period 2000 to 2007. Epidemiology
24(1):23–31, PMID: 23211349, https://doi.org/10.1097/EDE.0b013e3182770237.

Corrigan AE, Becker MM, Neas LM, Cascio WE, Rappold AG. 2018. Fine particulate
matters: the impact of air quality standards on cardiovascular mortality. Environ
Res 161:364–369, PMID: 29195185, https://doi.org/10.1016/j.envres.2017.11.025.

Dennison PE, Brewer SC, Arnold JD, Moritz MA. 2014. Large wildfire trends in
the western United States, 1984–2011. Geophys Res Lett 41(8):2928–2933,
https://doi.org/10.1002/2014GL059576.

Dockery DW, Pope III, CA, Xu X, Spengler JD,Ware JH, FayME, et al. 1993. An associ-
ation between air pollution and mortality in six U.S. cities. N Engl J Med
329(24):1753–1759, PMID: 8179653, https://doi.org/10.1056/NEJM199312093292401.

Dockery DW, Rich DQ, Goodman PG, Clancy L, Ohman-Strickland P, George P, et al.
2013. Effect of air pollution control on mortality and hospital admissions in
Ireland. Res Rep Health Eff Inst (176):3–109, PMID: 24024358.

Dominici F, Peng RD, Zeger SL, White RH, Samet JM. 2007. Particulate air pollution
and mortality in the United States: did the risks change from 1987 to 2000? Am J
Epidemiol 166(8):880–888, PMID: 17728271, https://doi.org/10.1093/aje/kwm222.

Fann N, Baker KR, Fulcher CM. 2012. Characterizing the PM2.5-related health bene-
fits of emission reductions for 17 industrial, area and mobile emission sectors
across the U.S. Environ Int 49:141–151, PMID: 23022875, https://doi.org/10.1016/
j.envint.2012.08.017.

Fann N, Fulcher CM, Hubbell BJ. 2009. The influence of location, source, and emis-
sion type in estimates of the human health benefits of reducing a ton of air pol-
lution. Air Qual Atmos Health 2(3):196–176, PMID: 19890404, https://doi.org/10.
1007/s11869-009-0044-0.

Fann N, Kim S-Y, Olives C, Sheppard L. 2017. Estimated changes in life expectancy
and adult mortality resulting from declining PM2.5 exposures in the contiguous
United States: 1980–2010. Environ Health Perspect 125(9):097003, https://doi.org/
10.1289/EHP507.

Foley KM, Roselle SJ, Appel KW, Bhave PV, Pleim JE, Otte TL, et al. 2010.
Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling
system version 4.7. Geosci Model Dev 3(1):205–226, https://doi.org/10.5194/gmd-
3-205-2010.

Gan C-M, Hogrefe C, Mathur R, Pleim J, Xing J, Wong D, et al. 2016. Assessment
of the effects of horizontal grid resolution on long-term air quality trends using
coupled WRF-CMAQ simulations. Atmos Environ 132:207–216, https://doi.org/
10.1016/j.atmosenv.2016.02.036.

Gan C-M, Pleim J, Mathur R, Hogrefe C, Long CN, Xing J, et al. 2015. Assessment of
long-term WRF–CMAQ simulations for understanding direct aerosol effects on
radiation “brightening” in the United States. Atmos Chem Phys 15(21):12193–
122209, https://doi.org/10.5194/acp-15-12193-2015.

Gilliland F, et al. 2017. The Effects of Policy-Driven Air Quality Improvements on
Children’s Respiratory Health, Boston, MA: Health Effects Institute.

Hastie T, Friedman J, Tibshirani R. 2001. Linear methods for regression. In: The
Elements of Statistical Learning: Data Mining, Inference, and Prediction. New
York, NY: Springer, 41–78.

Hayes AF. 2015. An index and test of linear moderated mediation. Multivariate Behav
Res 50(1):1–22, PMID: 26609740, https://doi.org/10.1080/00273171.2014.962683.

Henneman LR, Choirat C, Zigler CM. 2019. Accountability assessment of health
improvements in the United States associated with reduced coal emissions
between 2005 and 2012. Epidemiology 30(4):477–485, PMID: 31162280,
https://doi.org/10.1097/EDE.0000000000001024.

Krewski D, Burnett R, Jerrett M, Pope CA, Rainham D, Calle E, et al. 2005. Mortality
and long-term exposure to ambient air pollution: ongoing analyses based on
the American Cancer Society cohort. J Toxicol Environ Health Part A 68(13–
14):1093–1109, PMID: 16024490, https://doi.org/10.1080/15287390590935941.

Laden F, Neas LM, Dockery DW, Schwartz J. 2000. Association of fine particulate mat-
ter from different sources with daily mortality in six U.S. cities. Environ Health
Perspect 108(10):941–947, PMID: 11049813, https://doi.org/10.1289/ehp.00108941.

Lee CJ, Martin RV, Henze DK, Brauer M, Cohen A, Donkelaar AV, et al. 2015.
Response of global particulate-matter-related mortality to changes in local
precursor emissions. Environ Sci Technol 49(7):4335–4344, PMID: 25730303,
https://doi.org/10.1021/acs.est.5b00873.

Lippmann M. 2014. Toxicological and epidemiological studies of cardiovascular
effects of ambient air fine particulate matter (PM2.5) and its chemical compo-
nents: coherence and public health implications. Crit Rev Toxicol 44(4):299–
347, PMID: 24494826, https://doi.org/10.3109/10408444.2013.861796.

MacKinnon DP, Fairchild AJ, Fritz MS. 2007. Mediation analysis. Annu Rev
Psychol 58:593–614, PMID: 16968208, https://doi.org/10.1146/annurev.psych.
58.110405.085542.

Murphy SL, Xu J, Kochanek KD. 2013. Deaths: final data for 2010. Natl Vital Stat
Rep 61(4):1–117, PMID: 24979972.

Nychka D, Furrer R, Paige J, Sain S. 2018. fields: Tools for Spatial Data. Boulder,
CO: University Corporation for Atmospheric Research.

Ostro B, Hu J, Goldberg D, Reynolds P, Hertz A, Bernstein L, et al. 2015. Associations
of mortality with long-term exposures to fine and ultrafine particles, species and
sources: results from the California Study Cohort. Environ Health Perspect
123(6):549–556, PMID: 25633926, https://doi.org/10.1289/ehp.1408565.

Peel JL, et al. 2010. Impact of Improved Air Quality During the 1996 Summer Olympic
Games in Atlanta on Multiple Cardiovascular and Respiratory Outcomes.
Boston,MA: Health Effects Institute.

Environmental Health Perspectives 017005-7 128(1) January 2020

https://www.ncbi.nlm.nih.gov/pubmed/9796247
https://www.ncbi.nlm.nih.gov/pubmed/30147852
https://doi.org/10.5194/gmd-10-1703-2017
https://doi.org/10.1016/j.envsci.2011.02.006
https://doi.org/10.1016/j.envsci.2011.02.006
https://www.ncbi.nlm.nih.gov/pubmed/30448149
https://doi.org/10.1016/S2468-2667(18)30235-4
https://doi.org/10.1016/S2468-2667(18)30235-4
https://www.ncbi.nlm.nih.gov/pubmed/26595236
https://doi.org/10.1021/acs.est.5b03709
https://doi.org/10.1021/acs.est.5b03709
https://www.ncbi.nlm.nih.gov/pubmed/19337521
https://doi.org/10.1289/ehp.11711
https://doi.org/10.1289/ehp.11711
https://www.bea.gov/data/economic-accounts/regional
https://www.bea.gov/data/economic-accounts/regional
https://www.ncbi.nlm.nih.gov/pubmed/19541856
https://doi.org/10.1093/aje/kwp150
https://doi.org/10.1093/aje/kwp150
https://www.ncbi.nlm.nih.gov/pubmed/28408086
https://doi.org/10.1016/S0140-6736(17)30505-6
https://doi.org/10.1016/S0140-6736(17)30505-6
https://www.ncbi.nlm.nih.gov/pubmed/23211349
https://doi.org/10.1097/EDE.0b013e3182770237
https://www.ncbi.nlm.nih.gov/pubmed/29195185
https://doi.org/10.1016/j.envres.2017.11.025
https://doi.org/10.1002/2014GL059576
https://www.ncbi.nlm.nih.gov/pubmed/8179653
https://doi.org/10.1056/NEJM199312093292401
https://www.ncbi.nlm.nih.gov/pubmed/24024358
https://www.ncbi.nlm.nih.gov/pubmed/17728271
https://doi.org/10.1093/aje/kwm222
https://www.ncbi.nlm.nih.gov/pubmed/23022875
https://doi.org/10.1016/j.envint.2012.08.017
https://doi.org/10.1016/j.envint.2012.08.017
https://www.ncbi.nlm.nih.gov/pubmed/19890404
https://doi.org/10.1007/s11869-009-0044-0
https://doi.org/10.1007/s11869-009-0044-0
https://doi.org/10.1289/EHP507
https://doi.org/10.1289/EHP507
https://doi.org/10.5194/gmd-3-205-2010
https://doi.org/10.5194/gmd-3-205-2010
https://doi.org/10.1016/j.atmosenv.2016.02.036
https://doi.org/10.1016/j.atmosenv.2016.02.036
https://doi.org/10.5194/acp-15-12193-2015
https://www.ncbi.nlm.nih.gov/pubmed/26609740
https://doi.org/10.1080/00273171.2014.962683
https://www.ncbi.nlm.nih.gov/pubmed/31162280
https://doi.org/10.1097/EDE.0000000000001024
https://www.ncbi.nlm.nih.gov/pubmed/16024490
https://doi.org/10.1080/15287390590935941
https://www.ncbi.nlm.nih.gov/pubmed/11049813
https://doi.org/10.1289/ehp.00108941
https://www.ncbi.nlm.nih.gov/pubmed/25730303
https://doi.org/10.1021/acs.est.5b00873
https://www.ncbi.nlm.nih.gov/pubmed/24494826
https://doi.org/10.3109/10408444.2013.861796
https://www.ncbi.nlm.nih.gov/pubmed/16968208
https://doi.org/10.1146/annurev.psych.58.110405.085542
https://doi.org/10.1146/annurev.psych.58.110405.085542
https://www.ncbi.nlm.nih.gov/pubmed/24979972
https://www.ncbi.nlm.nih.gov/pubmed/25633926
https://doi.org/10.1289/ehp.1408565


Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. 2002. Lung cancer,
cardiopulmonary mortality, and long-term exposure to fine particulate air pollu-
tion. JAMA 287(9):1132–1141, PMID: 11879110, https://doi.org/10.1001/jama.287.9.
1132.

Pope CA, Ezzati M, Dockery DW. 2009. Fine-particulate air pollution and life expect-
ancy in the United States. N Engl J Med 360(4):376–386, PMID: 19164188,
https://doi.org/10.1056/NEJMsa0805646.

Rich DQ. 2017. Accountability studies of air pollution and health effects: lessons
learned and recommendations for future natural experiment opportunities.
Environ Int 100:62–78, PMID: 28089581, https://doi.org/10.1016/j.envint.2016.12.019.

Roth GA, Dwyer-Lindgren L, Bertozzi-Villa A, Stubbs RW, Morozoff C, Naghavi M,
et al. 2017. Trends and patterns of geographic variation in cardiovascular mor-
tality among US counties, 1980–2014. JAMA 317(19):1976–1992, PMID: 28510678,
https://doi.org/10.1001/jama.2017.4150.

Russell AG, Tolbert PE, Henneman LRF, Abrams J, Liu C, Klein M, et al. 2018.
Impacts of Regulations on Air Quality and Emergency Department Visits in the
Atlanta Metropolitan Area 1999–2013, Research Report 195, Boston, MA: Health
Effects Institute, https://www.healtheffects.org/system/files/RussellRR195_0.pdf
[accessed 13 August 2019].

Schwartz J, Austin E, Bind MA, Zanobetti A, Koutrakis P. 2015. Estimating causal
associations of fine particles with daily deaths in Boston. Am J Epidemiol
182(7):644–650, PMID: 26346544, https://doi.org/10.1093/aje/kwv101.

Schwartz J, Dockery DW, Neas LM. 1996. Is daily mortality associated specifically
with fine particles? J Air Waste Manag Assoc 46(10):927–939, PMID: 28065142,
https://doi.org/10.1080/10473289.1996.10467528.

Sobel ME. 1982. Asymptotic confidence intervals for indirect effects in structural
equation models. Sociol Methodol 13:290–312, https://doi.org/10.2307/270723.

Su C, Hampel R, Franck U, Wiedensohler A, Cyrys J, Pan X, et al. 2015. Assessing
responses of cardiovascular mortality to particulate matter air pollution for
pre-, during- and post-2008 Olympics periods. Environ Res 142:112–122, PMID:
26133808, https://doi.org/10.1016/j.envres.2015.06.025.

Thurston GD, Burnett RT, Turner MC, Shi Y, Krewski D, Lall R, et al. 2016. Ischemic
heart disease mortality and long-term exposure to source-related components

of U.S. fine particle air pollution. Environ Health Perspect 124(6):785–794,
PMID: 26629599, https://doi.org/10.1289/ehp.1509777.

U.S. EPA (U.S. Environmental Protection Agency). 2009. Integrated Science Assessment
of Particulate Matter, Research Triangle Park, NC: U.S. Environmental Protection
Agency.

U.S. Environmental Protection Agency. 2011. The Benefits and Costs of the Clean
Air Act from 1990 to 2020: Summary Report. https://www.epa.gov/sites/
production/files/2015-07/documents/summaryreport.pdf.

U.S. Environmental Protection Agency. 2017. Our Nation’s Air: Status and Trends
Through 2016, Research Triangle Park, NC: U.S. Environmental Protection Agency.

VanderWeele T, Vansteelandt S. 2014. Mediation analysis with multiple mediators.
Epidemiol Methods 2(1):95–115, PMID: 25580377, https://doi.org/10.1515/em-
2012-0010.

Vedal S, Campen MJ, McDonald JD, Kaufman JD, Larson TV, Sampson PD, et al.
2013. National Particle Component Toxicity (NPACT) Initiative Report on
Cardiovascular Effects, Research Report, Boston, MA: Health Effects Institute.

Wang H, Schumacher AE, Levitz CE, Mokdad AH, Murray CJ. 2013. Left behind: widen-
ing disparities for males and females in US county life expectancy, 1985–2010.
Popul Health Metr 11(1):8, PMID: 23842281, https://doi.org/10.1186/1478-7954-11-8.

Wang J, Xing J, Mathur R, Pleim JE, Wang S, Hogrefe C, et al. 2017. Historical
trends in PM2.5-related premature mortality during 1990–2010 across the north-
ern hemisphere. Environ Health Perspect 125(3):400–408, PMID: 27539607,
https://doi.org/10.1289/EHP298.

Wang W, Primbs T, Tao S, Massey Simonich SL. 2009. Atmospheric particulate
matter pollution during the 2008 Beijing Olympics. Environ Sci Technol
43(14):5314–5320, PMID: 19708359, https://doi.org/10.1021/es9007504.

Xing J, Pleim J, Mathur R, Pouliot G, Hogrefe C, Gan C-M, et al. 2013. Historical
gaseous and primary aerosol emissions in the United States from 1990 to 2010.
Atmos Chem Phys 13(15):7531–7549, https://doi.org/10.5194/acp-13-7531-2013.

Xing J, Mathur R, Pleim J, Hogrefe C, Gan C-M, Wong DC, et al. 2015. Observations
and modeling of air quality trends over 1990–2010 across the Northern
Hemisphere: China, the United States and Europe. Atmos Chem Phys 15(5):2723–
2747, https://doi.org/10.5194/acp-15-2723-2015.

Environmental Health Perspectives 017005-8 128(1) January 2020

https://www.ncbi.nlm.nih.gov/pubmed/11879110
https://doi.org/10.1001/jama.287.9.1132
https://doi.org/10.1001/jama.287.9.1132
https://www.ncbi.nlm.nih.gov/pubmed/19164188
https://doi.org/10.1056/NEJMsa0805646
https://www.ncbi.nlm.nih.gov/pubmed/28089581
https://doi.org/10.1016/j.envint.2016.12.019
https://www.ncbi.nlm.nih.gov/pubmed/28510678
https://doi.org/10.1001/jama.2017.4150
https://www.healtheffects.org/system/files/RussellRR195_0.pdf
https://www.ncbi.nlm.nih.gov/pubmed/26346544
https://doi.org/10.1093/aje/kwv101
https://www.ncbi.nlm.nih.gov/pubmed/28065142
https://doi.org/10.1080/10473289.1996.10467528
https://doi.org/10.2307/270723
https://www.ncbi.nlm.nih.gov/pubmed/26133808
https://doi.org/10.1016/j.envres.2015.06.025
https://www.ncbi.nlm.nih.gov/pubmed/26629599
https://doi.org/10.1289/ehp.1509777
https://www.epa.gov/sites/production/files/2015-07/documents/summaryreport.pdf
https://www.epa.gov/sites/production/files/2015-07/documents/summaryreport.pdf
https://www.ncbi.nlm.nih.gov/pubmed/25580377
https://doi.org/10.1515/em-2012-0010
https://doi.org/10.1515/em-2012-0010
https://www.ncbi.nlm.nih.gov/pubmed/23842281
https://doi.org/10.1186/1478-7954-11-8
https://www.ncbi.nlm.nih.gov/pubmed/27539607
https://doi.org/10.1289/EHP298
https://www.ncbi.nlm.nih.gov/pubmed/19708359
https://doi.org/10.1021/es9007504
https://doi.org/10.5194/acp-13-7531-2013
https://doi.org/10.5194/acp-15-2723-2015

	Impact of Reductions in Emissions from Major Source Sectors on Fine Particulate Matter–Related Cardiovascular Mortality
	Introduction
	Materials and Methods
	Data Sources
	Mortality data
	Air quality data
	Covariate data

	Analytic Approach
	PM2.5–related CV mortality trend

	PM2.5 Component–Related CV Mortality Trend
	EME

	Results
	Overall Trends in CV Mortality and Air Quality
	CV Mortality Rates Attributable to Trends in PM2.5
	CV Mortality Rates Attributable to Trends in PM2.5 Components
	Mitigation by Emission Source Sectors

	Discussion
	Acknowledgments
	References


